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The Thue–Morse sequence is an example of an aperiodic structure with a singular
continuous contribution to the diffraction pattern. Many satellites observed near the
main diffraction peaks have been indexed and their intensities have been numerically
calculated. Details of such a calculation are presented for satellite peaks indexed by
1/3. An average-unit-cell approach was successfully used to describe probabilities
of atomic displacements from the points of the reference lattice. For a certain pa-
rameterisation of such probabilities, the results of fairly simple integer calculations
could be easily generalised. For some defined sets of points, the analytical expres-
sions for diffraction intensities were found and tested numerically on a wide range
of scattering vectors and for up to 232 atoms. c© 2000 Academic Press
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INTRODUCTION

The one-sided Thue–Morse sequence can be defined on a two-letter alphabet{0, 1}, using
the following substitution ruleσ : σ(0)= 0 1, σ (1) = 1 0 [1–11]. Starting with 0, one ob-
tains the sequence 0110100110010110. . . , which is neither periodic nor quasiperiodic.
For such a sequence the two figures are replaced by the corresponding two bonds (a and
b). In this paper it is assumed thatb = 0.1 anda = 10b = 1 and the “atoms” are placed
at the bond’s edges (see also [3, 4, 11–13]). In the diffraction pattern of such a structure
one can find two components that scale differently with the number of atoms (N). The
first component is known as the atomic contribution (Bragg peaks); it has intensities that
scale asN2. The second one is a singular continuous component, which scales fractally
with the number of atoms. For the Thue–Morse sequence the numbers of the two bonds
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are equal, and a periodic subset made of every second position, with a periodicity con-
stant equal toλ0 = (a+ b) = 1.1, can be selected. The corresponding wave vector is then
equal tok0 = 2π/(a+ b) ≈ 5.71. Therefore, for the Thue–Morse sequence, there is an
average periodic structure with some appropriate decoration of the unit cell. Occupation
probabilities of atomic positions in such a unit cell are given by [14–16]P(0) = 0.5 and
P(±0.1) = 0.25, which leads to the following expression for the intensities of Bragg peaks
atk = n · k0:

I (k)

N2
= 1

4
[1+ cos(kb)]2. (1)

Equation (1) gives correct intensities at periodic positions of Bragg peaks and, in general,
describes the so-called envelope function shown as a dashed line in Fig. 1a. In the diffraction
pattern of the Thue–Morse sequence there is a lot of diffuse scattering, namely the previously
mentioned singular continuous part of the diffraction pattern (see Fig. 1b) [17, 18]. It is
already known that there is a cumulation of diffuse scattering aroundq0 = k0/3, which leads
to well-defined satellite reflections around such particular positions of scattering vectors.
However, one should remember that peak positions fluctuate aroundq0. This feature is
also discussed in our paper. As already shown in [14], intensities at satellite positions scale
fractally, disappearing gradually from the diffraction pattern with an increasing number of
atoms. In the following we describe intensity at satellite positions given byq0, using the
average-unit-cell approach recently developed by Wolny [14, 19–21]. This allows us not
only to calculate the fractal exponents for the scaling behavior of diffraction intensities with
respect to the number of atoms, but also to write an analytical expression for diffraction
intensities obtained for particular numbers of atoms.

AVERAGE-UNIT-CELL APPROACH

Using the concept of reference lattice [14, 20], we can write the structure factor for
monoatomic structure as

F(k) = N f

λ/2∫
−λ/2

Pk(u) exp(iku) du, (2)

wherePk(u) is the probability distribution of atomic displacements from the points of the
reference lattice. This distribution depends on the scattering vectork = 2π/λ; and for all
higher harmonics (i.e.,m · k, wherem ∈ Z) we have

Pmk(u) =
∑
n∈Z

Pk

(
u+ n

λ

m

)
(3)

and

F(mk) = N f

+λ′/2∫
−λ′/2

Pmk(u
′) · eimku′ · du′ = N f

+λ/2∫
−λ/2

Pk(u) · eimku · du. (4)

This means that the probability distributionPk(u), |u| ≤ λ/2, describes an average unit cell
for the scattering vectork and all its higher harmonics.
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FIG. 1. Diffraction pattern of Thue–Morse sequence. (a) Envelope function given by (1) connects all maxima
of the main diffraction peaks. (b) Intensities of satellite reflections are well described by envelope functions given
by (10). Envelope curves have been calculated as a function ofk for two different satellite positions:q=+k0/3
(dotted line) andq=−k0/3 (dashed line).

It has already been shown in [19] that for a modulated structure the expression for the
structure factor of themth satellite of anynth main reflection is

F(nk,mq) = N f

u1∫
−u1

v1∫
−v1

Pk,q(u, v)exp[i (nku+mqv)] du dv, (5)

for m, n ∈ Z, u1 = π/k, v1 = π/q, while the probability distributionPk,q(u, v) describes
an average unit cell for a series of main reflections and their satellites.
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THUE–MORSE SEQUENCE

For the considered Thue–Morse sequence there is a periodic superstructure consisting
of every second atom at the lattice positionsxn = n(a+ b), n ∈ Z. The unit cell of this
superstructure is decorated by two atoms, one located at position 0 and the other occupying
aperiodically the two possible positions at distancesa or b from the previous one. For
an infinite cluster, occupation probabilities are equal (Pa = Pb = 1/4), which leads to the
expression for the Bragg reflections given by (1). For any finite structure the difference of
these two probabilities is bounded,

|Pa − Pb| ≤ 1

N
, (6)

whereN is the number of atoms in the structure; the proof can be found in [15].

Satellite Reflections at q= k0/3

Using two reference lattices, one with periodicityλ0 = (a+ b) = 1.1 (corresponding to
the scattering vectork0 of the main reflections) and the other with periodicity equal to 3λ0

(which corresponds to the scattering vectorq = k0/3 describing positions of an appropriate
satellite), one gets the probability distribution shown in Fig. 2. The probability distribution
in such an average unit cell is non-zero for nine positions only; and, for the number of atoms
given byN = 6n, n ∈ Z+, the distribution values are related as follows:

P1 = P4 = P7 = 1/6 and P2+ P3 = P5+ P6 = P8+ P9 = 1/6. (7)

This relation is a consequence of the fact that for each periodλ0 there is an extra atom
placed at distancea or b from the super-lattice position (see Table I).

Using (7) and Fig. 2b, a set of three parameters1i (i = 1, 2, 3) can be defined, such that

11 = (P2− P3)N, 12 = (P6− P5)N, 13 = (P9− P8)N (8)

TABLE I

Occupation Probabilities of Nine Different Atomic

Positions in 3(a + b) Supercell

Position in a 3(a+ b)
n supercell Pn

1 0 1/6
2 b P2 + P3 = 1/6
3 a
4 a+ b 1/6
5 (a+ b)+ b P5 + P6 = 1/6
6 (a+ b)+ a
7 2(a+ b) 1/6
8 2(a+ b)+ b P8 + P9 = 1/6
9 2(a+ b)+ a
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FIG. 2. (a) Positions of non-zero probability distributions of atomic displacements are marked in two-
parameter space(u, v). (b) Probability distribution versusv for the number of atoms equal to 72. Peaks marked
asP1, P4, andP7 are equal to 1/6 and correspond to periodical positions of the superstructure. Other probabilities
scale with the number of atoms and approach 1/12 for infinite cluster.

and

P2 = 1

12
+ 11

2N
, P3 = 1

12
− 11

2N

P5 = 1

12
− 12

2N
, P6 = 1

12
+ 12

2N
(9)

P8 = 1

12
− 13

2N
, P9 = 1

12
+ 13

2N
.
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The structure factor (i.e., the Fourier transform of (9)) is then given by

F(k+ q) = F1(k+ q)+ F2(k+ q), (10)

where

F1(k+q) = N

6
[1+ 2 cos(q(a+ b))+ cos((k+q)b)+ cos(kb−qa)

+ cos(kb+q(a+ 2b))]

F2(k+ q) = 11

2
[exp(i (k+ q)b)− exp(i (qa− kb))] (11)

− i12 sin(kb+ q(a+ 2b))

− 13

2
[exp(i (kb− qa))− exp(−i (k+ q)b)].

These equations describe correctly the structure factor for each scattering vector given by

kn,m = nk0+mq0 n,m ∈ Z; k0 = 2π

a+ b
; q0 = k0

3
, (12)

wherenk0 is the position of the main Bragg peak andmq0 corresponds to the position of
the appropriatemth satellite. The first part of the structure factor (F1) does not depend on
the number of atoms; forq = 0, it leads to expression (1) for the diffraction intensity of
Bragg reflections.

Parameters1i (shown in Fig. 3) depend on the number of atoms. Figure 3 indicates,
and it has also been checked numerically, that for special values assumed by the number of

FIG. 3. Plots of1i /N, i = 1, 2, 3 versus logN. Open circles mark points for whichN = 6 · 4n and12 =
13 = 11/2.
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FIG. 4. Double logarithmic plots of1s divided byN versus the number of atoms, for points marked in
Fig. 3. Solid lines represent Eq. (15) with the exponent equal toα= log4 3.

atoms or more precisely whenN is equal to 6· 4n (n = 1, 2, . . .), the following relation is
fulfilled:

13 = 12 = 11

2
. (13)

In a double logarithmic scale the1 plots versus the number of atoms are linear
(Fig. 4), with the linear coefficient equal toα = log4(3)≈ 0.7925. The exact value of the
coefficient has been obtained for numerical integer calculations performed for a number
of atoms equal to 6· 41 = 24 and 6· 42 = 96. For those numbers,11 is equal to 4 or 12,
which corresponds to probabilitiesP2 = 4/24 or 14/96 andP3 = 0 or 2/96, respectively.
The plots of1multiplied by a factor ofN−α versus the number of atoms (Fig. 5) are almost
constant (within the range of some fluctuations) in the logarithmic scale ofN; therefore,

1i ∝ Nα, whereα = log4(3). (14)

More precisely, forN = 6 · 4n (n = 1, 2, 3, . . .),

11 = 2N

9

(
3

4

)n

= 2N

9

(
3

4

)log4(N/6)

= 4

3

(
N

6

)α
(15)

and

13 = 12 = 11/2.

These relations have been checked in our “computer experiment.”



320 WOLNY, WN K, AND VERGER-GAUGRY

FIG. 5. Parameters1i (i = 1, 2) multiplied by a factor ofN−α versus logarithm of the number of atoms.
Periodic plots with periodicity constant equal to log 4 can be found.

Number of Points Equal to N= (2m)· 6, m∈ Z

It has been checked numerically that for eachN = (2m) · 6,m ∈ Z+ (i.e., for all even
multiples of 6),

11−12−13 = 0 (16)

and1i · N−α (i.e., the1 product with the number of atoms to the power of−α) is a periodic
function of logN, with a periodicity constant equal to log 4. This allows us to plot1i · N−α
versusξ , where

ξ ≡ log4 N mod 1, (17)

which is shown in Fig. 6a. For each delta, a common curve is obtained, which is independent
of the number of atoms. Actually, the curves look rather complicated, and a more general
expression cannot be given yet. However, we have found the exact values for some special
points. The two sets of points are as follows:

Set I:

N = 24
∑

m∈Z+

βm · 4m, whereβm ∈ {0, 1},
(18)

11 = 4
∑

m∈Z+

βm · 3m, 13 = 12 = 11

2
.

Some examples of such numbers are

(N,11) ∈ {(24, 4), (96, 12), (120, 16), (384, 36) . . .}.
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FIG. 6. Plots of1i · N−α (i = 1, 2, 3) versusξ = [log4 N mod 1] for the number of atoms equal to even
(a) and odd (b) multiples of 6. The first ten odd multiples are marked as open circles.

Set II:

N = 12
∑

m∈Z+

βm · 4m, whereβm ∈ {0, 1},
(19)

11 = 2
∑

m∈Z+

βm · 3m, 12 = 11, 13 = 0.

Some examples of such numbers are

(N,11) ∈ {(12, 2), (48, 6), (60, 8), (192, 18) . . .}.
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FIG. 7. Plot of13 · N−α .13 equals to zero forN = 12
∑

m∈Z+βm · 4m; whereβm ∈ {0, 1}.

Those two sets give an infinite number of different points in Fig. 6a. More details
for Set II can be found in Fig. 7. Those points can be easily ordered in a sequence as
follows:

Series 1: ξ =
{

log4

[
3

(
1+ 1

4

)]
, log4

[
3

(
1+ 1

4
+ 1

42

)]
, . . .

}
= {0.953, 0.989, . . . ,1};

Series 2: ξ =
{

log4

[
3

(
1+ 1

42

)]
, log4

[
3

(
1+ 1

42
+ 1

43

)]
, . . .

}
≈ {0.836, 0.847, . . . ,0.850};

Series 3: ξ =
{

log4

[
3

(
1+ 1

43

)]
, log4

[
3

(
1+ 1

43
+ 1

44

)]
, . . .

}
≈ {0.796, 0.806, . . . ,0.807};

...

Seriesi : ξ =
{

log4

[
3

(
1+ 1

4i

)]
, log4

[
3

(
1+ 1

4i
+ 1

4i+1

)]
, . . .

}
;

...

and so on.

Number of Points Equal to N= (2m+ 1) · 6, m∈ Z

For all numbers of atoms equal to odd multiples of 6, the positions of points for each1i

(Fig. 6b) depart from the common curves shown in Fig. 6a for even multiples. However,
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such differences decrease rapidly to zero asN−1. The first 10 points in this figure are
marked with open circles. ForN above 100 one can hardly see any difference from the
previous behaviour, with the points almost lined up along the common curve. One can
conclude that for a large enough number of atoms (i.e., for more than a few hundred atoms),
there are almost no differences between the diffraction pattern obtained for the number of
atoms equal to the neighbouring numbers given by even and those given by odd multiples
of 6.

DIFFRACTION ANALYSIS

Using formulas (10) and (11), one can calculate intensities of diffraction peaks for the
scattering vectors given by (12)

I = F2
real+ F2

imag, (20)

whereFreal andFimag are the real and imaginary parts of the structure factor, respectively.
The formulas can be essentially reduced for certain points described by (18) and (19). The
results are as follows:

Set I:

Freal(q) = N

6
[1+ 2 cos(q(a+ b))+ cos(qb)+ cos(qa)+ cos(q(a+ 2b))]

+ 3

4
11[cos(qb)− cos(qa)] (21)

Fimag(q) = 11

4
[sin(qb)− sin(qa)− 2 sin(q(a+ 2b))],

where11 is given by (18). This is the envelope function plotted in Fig. 8a; it correctly
describes intensities at any position of the main peaks and their satellites given by (12).

Set II:

Freal(q) = N

6
[1+ 2 cos(q(a+ b))+ cos(qb)+ cos(qa)+ cos(q(a+ 2b))]

+ 1

2
11[cos(qb)− cos(qa)] (22)

Fimag(q) = 11

2
[sin(qb)− sin(qa)− 2 sin(q(a+ 2b))],

where11 is given by (19). The appropriate plot of the envelope function is shown in
Fig. 8b. The two envelope functions in Figs. 8a and 8b have been calculated using two
different formulas ((21) and (22)). There is only a small difference between those envelopes,
as they correctly describe the intensities of the main reflections and their satellites. The
scaling exponent for the diffraction intensities of satellite reflections is 2α = 2 log4 3,
which is very close to the one obtained previously [14].

In Figs. 8a and 8b one can see small differences between the envelope function and the
maximum intensities of the appropriate satellites because the maximum intensity does not
correspond to the exact position of the satellite with index equal to 1/3. The small shift from
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FIG. 8. Diffraction patterns of the Thue–Morse sequence and corresponding envelope functions obtained for
different numbers of atoms: (a)N = 96 is the second point of Set I (18) and the envelope function was calculated
according to (21); (b)N = 60 is the third point of Set II (19) and the envelope function was calculated according
to (22); (c)N = 144 is the number of atoms for which satellites are placed almost at perfect positions (see Fig. 9);
in this case, a general expression (11) has been used for the envelope function calculation.

such a particular position is shown in Fig. 9. It oscillates and goes to zero for the number
of atoms increasing to infinity. However, it should be stressed that for any scattering vector
given by (12), the envelope function gives exactly the same value as the Fourier transform.
A special test has been also performed forN = 144, when the shift of peak position is
almost zero (Fig. 9). For this particular number, the envelope function fits the intensities
of the satellites almost perfectly (Fig. 8c). It should be noted that Figs. 1b and 8c show
the same diffraction pattern (i.e., forN = 144) but the diffraction peaks are connected by
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FIG. 8—Continued

different envelope functions given by (11). In Fig. 1b, the two different curves are plotted
as a function ofk (11), for q=±k0/3 respectively; and in Fig. 8c the envelope curve is
plotted as a function ofq (11), fork = 0.

For satellites indexed by 1/5 and 1/7, similar properties have been observed [21]. Fractal
exponents have been determined to be equal toα= log16 5 for index equal to 1/5 and
α= log64 7 for index equal to 1/7. Properly defined1parameters can be expressed similarly
to (18) and (19), but the coefficients must be changed. For example, when the satellite index

FIG. 9. Shift of peak position with respect to the perfect position of the satellite indexed by 4+ 1/3, versus
the number of atoms in cluster.
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is equal to 1/5, the value of the base of the power expansion forN in (18) and (19) should
be changed from 4 to 42, and for11, from 3 to 5.

CONCLUSIONS

In this paper, the average-unit-cell approach has been used for the diffraction analysis of
singular continuous diffraction patterns of the Thue–Morse sequence. For satellite reflec-
tions with indices equal to 1/3 of the main Bragg peaks, an average unit cell was constructed
in the space defined by two variables,u andv. The probability distribution obtained is non-
zero at only nine positions (Fig. 2a), which has allowed us to calculate envelope functions
for the main reflections as well as for the satellites. We noticed that probability distributions
depend on three parameters1i (i = 1, 2, 3) defined by (8). For such1’s, a general expres-
sion for the structure factor has been obtained (11). The1 parameters depend on the number
of atoms, scaling asNα [α= log4 3]. For numbers of atoms equal to even multiples of 6, for-
mula (16) holds, and only two1’s are independent. As a result of our computer experiment,
we also found that for some specially defined numbers of atoms (i.e., for Sets I and II), rela-
tions (18) and (19) hold respectively, and one1 parameter is enough to describe intensities
of the main reflections and their satellites. It has been shown that for double logarithmic
plots,1’s change periodically with the number of atoms, with the periodicity constant equal
to log(4), along a line with a slope equal to some fractal exponent. After appropriate scaling
of the1’s (i.e., multiplication by the factorN−α) and after introduction of a new variable
ξ (17), a common curve (Fig. 6a) is obtained for all numbers of atoms. A similar curve is
also obtained for all odd multiples of 6 as a limit of the number of atoms going to infinity.
This saw-like curve is rather complicated and analytical expressions have been suggested for
special sets of numbers only (i.e., Set I given by (18) and Set II by (19)). For those particular
numbers, exact formulas for diffraction intensities have been written as (21) and (22).

All the formulas in this paper have been tested numerically using integer calculations for
the number of atoms limited by 232. Exact integer calculations and a wide range ofN allow
us to formulate more general conclusions. However, strict mathematical proofs (in progress)
are still required. Some results are already available and will be published separately [15, 16].

Similar results have been obtained for all prime numbers less than or equal to 19, except
for 17, where the fractal exponent has been approximated as equal to 0.633± 0.0002, which
corresponds to the already known valueα = {log 17+ 2 log(4+√17)}/16 log 2. More
details of calculations will be published elsewhere. The next singular number is expected
for m= 41. However, the numerical calculations require calculations for integer numbers
more than 232 and are in progress.

This paper is an example of a simple “computer experiment.” In such an experiment,
calculations are performed for integer numbers only, and the strictly valid results can be
easily generalised and checked for arbitrarilry large numbers. Any appropriate hypothesis
can then be proven for arbitrarily large numbers, and its validity extrapolated for the number
of points to infinity. Results of such computer experiments can serve as a substitute for an
appropriate mathematical proof.
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